Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 197: 106486, 2024 May.
Article in English | MEDLINE | ID: mdl-38588615

ABSTRACT

Foams are a ubiquitous feature of marine environments. They can have major economic, societal and ecological consequences through their accumulation on the shore. Despite their pervasive nature and evidence that stable foam deposits play a pivotal role in the ecology of soft shore and estuaries, very limited amounts of information are available on their contribution to the structure and function at play in rocky intertidal ecosystems. This study shows that the metabolic rate of the high-shore gastropod Littorina saxatilis is significantly higher in individuals exposed to foams. Behavioural assays conducted under laboratory-controlled conditions further show that this species detects foam-born infochemicals both indirectly or directly, hence rely on both airborne and contact chemosensory cues. L. saxatilis also actively avoid areas covered in foam, and increase their activity in the presence of foam. These observations are interpreted in terms of foam-induced increased metabolic stress and increases behavioural anxiety and vigilance. They are further discussed in relation to the occurrence of two phytoplankton species known to produce repellent and/or toxic compounds such as domoic acid and dimethylsulfoniopropionate, the diatom Pseudo-nitzschia multistriata and the haptophyte Phaeocystis globosa, with the latter occurring at unusually high density. Taken together, these results suggest that the accumulation of foams on intertidal rocky shores may have major implications on taxa relying on both airborne and contact chemosensory cues to navigate, find food and mating partners. Specifically, the observed increased behavioural activity coupled with increased metabolic demands may impact species fitness and highlight potentially large ecological consequences in rocky intertidal ecosystems characterized by strong hydrodynamism and elevated organic matter content leading to the presence of long-lived foam.


Subject(s)
Ecosystem , Gastropoda , Humans , Animals
2.
Biol Lett ; 20(3): 20230457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531416

ABSTRACT

Plastic pollution and ongoing climatic changes exert considerable pressure on coastal ecosystems. Unravelling the combined effects of these two threats is essential to management and conservation actions to reduce the overall environmental risks. We assessed the capacity of a coastal ecosystem engineer, the blue mussel Mytilus edulis, to cope with various levels of aerial heat stress (20, 25, 30 and 35°C) after an exposure to substances leached from beached and virgin low-density polyethylene pellets. Our results revealed a significant interaction between temperature and plastic leachates on mussel survival rates. Specifically, microplastic leachates had no effect on mussel survival at 20, 25 and 30°C. In turn, mussel survival rates significantly decreased at 35°C, and this decrease was even more significant following an exposure to leachates from beached pellets; these pellets had a higher concentration of additives compared to the virgin ones, potentially causing a bioenergetic imbalance. Our results stress the importance of adopting integrated approaches combining the effects of multiple environmental threats on key marine species to understand and mitigate their potential synergistic effects on ecosystem dynamics and resilience in the face of the changing environment.


Subject(s)
Extreme Heat , Mytilus edulis , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Ecosystem , Heat-Shock Response
3.
Sci Total Environ ; 914: 169816, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38181965

ABSTRACT

Self-organized spatial patterns are increasingly recognized for their contribution to ecosystem functioning. They can improve the ecosystem's ability to respond to perturbation and thus increase its resilience to environmental stress. Plastic pollution has now emerged as major threat to aquatic and terrestrial biota. Under laboratory conditions, we tested whether plastic leachates from pellets collected in the intertidal can impair small-scale, spatial self-organization and byssal threads production of intertidal mussels and whether the effect varied depending on where the pellets come from. Specifically, leachates originating from plastic pellets collected from relatively pristine and polluted areas respectively impaired and inhibited the ability of mussels to self-organize at small-scale and to produce byssal threads compared to control conditions (i.e., seawater without leaching solution). Limitations to natural self-organizing processes and threads formation may translate to a declined capacity of natural ecosystems to avoid tipping points and to a reduced restoration success of disturbed ecosystems.


Subject(s)
Bivalvia , Ecosystem , Animals , Plastics , Microplastics , Seawater
4.
Sci Total Environ ; 892: 164683, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37295520

ABSTRACT

The COVID-19 pandemic generated a new source of plastic mass pollution, i.e. surgical masks, that preferentially accumulate in intertidal environments. Made of polymers, surgical masks are likely to leach additives and impact local intertidal fauna. As typical endpoints of complex developmental and physiological functions, behavioral properties are non-invasive key variables that are particularly studied in ecotoxicological and pharmacological studies, but have, first and foremost, adaptive ecological significance. In an era of ever-growing plastic pollution, this study focused on anxiety behaviors, i.e. startle response, scototaxis (i.e. preference for dark or light areas), thigmotaxis (i.e. preference for moving toward or away from physical barriers), vigilance and level of activity, of the invasive shore crab Hemigrapsus sanguineus in response to leachate from surgical masks. We first showed that in the absence of mask leachates H. sanguineus is characterized by a short startle time, a positive scototaxis, a strong positive thigmotaxis, and an acute vigilance behavior. Specifically, a significantly higher level of activity was observed in white areas, in contrast to the lack of significant differences observed in black areas. Noticeably, the anxiety behaviors of H. sanguineus did not significantly differ after a 6-h exposure to leachate solutions of masks incubated in seawater for 6, 12, 24, 48 and 96 h. In addition, our results were consistently characterized by a high inter-individual variability. This specific feature is discussed as an adaptive behavioral trait, which - through the observed high behavioral flexibility - increases H. sanguineus resilience to contaminant exposures and ultimately contribute to its invasion success in anthropogenically-impacted environments.


Subject(s)
Brachyura , COVID-19 , Animals , Humans , Brachyura/physiology , Pandemics , Masks
5.
Sci Total Environ ; 888: 164037, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37207783

ABSTRACT

Both individual and collective anti-predator behaviours are essential for the survival of many species. This is particularly true for ecosystem engineers such as intertidal mussels, which through their collective behaviour create novel habitats for a range of organisms and biodiversity hotspots. However, contaminants may disrupt these behaviours and consequently indirectly affect exposure to predation risk at the population level. Among these, plastic litter is a major and ubiquitous contaminant of the marine environment. Here, we assessed the impact of microplastic (MP) leachates of the most produced plastic polymer, polypropylene (PlasticsEurope, 2022), at a high but locally relevant concentration (i.e. ca. 12 g L-1) on the collective behaviours and anti-predator responses of both small and large Mytilus edulis mussels. Indeed, in contrast to large mussels, small ones reacted to MP leachates, showing a taxis towards conspecifics and stronger aggregations. All mussels reacted to the chemical cues of the predatory crab, Hemigrapsus sanguineus, but with two different collective anti-predator behaviours. Small mussels only showed a taxis towards conspecifics when exposed to predator cues. This response was also found in large ones with a tendency to form more strongly bound aggregations and a considerable reduced activity, i.e. they significantly delayed their time to start to form aggregations and decreased their gross distance. These anti-predator behaviours were respectively inhibited and impaired in small and large mussels by MP leachates. The observed collective behavioural changes may reduce individual fitness by enhancing predation risk, particularly in small mussels that are the crab H. sanguineus's favourite preys. Given the key role of mussels as ecosystem engineers, our observations suggest that plastic pollution may have implication on M. edulis at the species level, but also enhancing a cascading effect towards a higher level of organisation such as population, community and ultimately structure and function of intertidal ecosystem.


Subject(s)
Brachyura , Mytilus edulis , Animals , Ecosystem , Plastics , Mass Behavior , Cues , Mytilus edulis/physiology , Brachyura/physiology
6.
Environ Pollut ; 324: 121365, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858101

ABSTRACT

Plastic has become one of the most ubiquitous and environmentally threatening sources of pollution in the Anthropocene. Beyond the conspicuous visual impact and physical damages, plastics both carry and release a cocktail of harmful chemicals, such as monomers, additives and persistent organic pollutants. Here we show through a review of the scientific literature dealing with both plastic pollution and benthic foraminifera (Rhizaria), that despite their critical roles in the structure and function of benthic ecosystems, only 0.4% of studies have investigated the effects of micro- and nano-plastics on this group. Consequently, we urge to consider benthic foraminifera in plastic pollution studies via a tentative roadmap that includes (i) the use of their biological, physiological and behavioral responses that may unveil the effects of microplastics and nanoplastics and (ii) the evaluation of the indicative value of foraminiferal species to serve as proxies for the degree of pollution. This appears particularly timely in the context of the development of management strategies to restore coastal ecosystems.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Plastics , Environmental Pollution , Water Pollutants, Chemical/analysis
7.
J Therm Biol ; 112: 103428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36796885

ABSTRACT

Microbial symbionts have strong potential to mediate responses to climate change. Such modulation may be particularly important in the case of hosts that modify the physical habitat structure. By transforming the habitats, ecosystem engineers alter resource availability and modulate environmental conditions which, in turn, indirectly shape the community associated with that habitat. Endolithic cyanobacteria are known to reduce the body temperatures of infested mussels and here, we assessed whether the thermal benefits of endoliths on the intertidal reef-building mussel Mytilus galloprovincialis extends to the invertebrate community utilising mussel beds as habitat. Artificial reefs of biomimetic mussels either colonised or not colonised by microbial endoliths were used to test whether infauna species (the limpet Patella vulgata, the snail Littorina littorea and mussel recruits) in a mussel bed with symbionts experience lower body temperatures than those within a bed composed of mussels without symbionts. We found that infaunal individuals benefitted from being surrounded by mussels with symbionts, an effect that may be particularly critical during intense heat stress. Indirect effects of biotic interactions, complicate our understanding of community and ecosystem responses to climate change, especially in cases involving ecosystem engineers, and accounting for them will improve our predictions.


Subject(s)
Ecosystem , Mytilus , Humans , Animals , Mytilus/physiology , Heat-Shock Response , Body Temperature , Cold Temperature
8.
Sci Total Environ ; 848: 157771, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35926622

ABSTRACT

Our understanding of how anthropogenic stressors such as climate change and plastic pollution interact with biodiversity is being widened to include diversity below the species level, i.e., intraspecific variation. The emerging appreciation of the key ecological importance of intraspecific diversity and its potential loss in the Anthropocene, further highlights the need to assess the relative importance of intraspecific versus interspecific diversity. One such issue is whether a species responds as a homogenous whole to plastic pollution. Using manipulative field transplant experiments and laboratory-controlled hydrodynamic simulations, we assessed the relative effects of intraspecific and interspecific diversity on microplastic trapping in coastal biogenic habitats dominated by two key bioengineers, the brown intertidal macroalgae Fucus vesiculosus and F. guiryi. At the individual level, northern morphotypes of F. guiryi trapped more microplastics than southern individuals, and F. vesiculosus trapped more microplastics than F. guiryi. Canopy density varied among species, however, leading to reversed patterns of microplastic accumulation, with F. guiryi canopies accumulating more microplastics than those of F. vesiculosus, while no differences were observed between the canopies of F. guiryi morphotypes. We emphasize the importance of assessing the effects of intraspecific variation which, along with other crucial factors such as canopy density, flow velocity and polymer composition, modulates the extent of microplastic accumulation in coastal biogenic habitats. Our findings indicate that a realistic estimation of plastic accumulation in biogenic habitats requires an understanding of within- and between-species traits at both the individual and population levels.


Subject(s)
Fucus , Plastics , Biodiversity , Ecosystem , Humans , Microplastics
9.
Chemosphere ; 306: 135425, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35809744

ABSTRACT

The massive contamination of the environment by plastics is an increasing global scientific and societal concern. Knowing whether and how these pollutants affect the behaviour of keystone species is essential to identify environmental risks effectively. Here, we focus on the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify the environment and provide numerous ecosystem functions and services. Specifically, we assess the effect of virgin polypropylene beads on mussels' chemotactic (i.e. a directional movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change in movement properties such as speed, distance travelled or turning frequency in response to a chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual mussels reduced both their gross distance and speed, changes interpreted here as an avoidance behaviour. When exposed to polypropylene leachates, mussels moved less compared to control conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic leachates, mussels significantly changed the direction of movement suggesting a leachate-induced loss of their negative chemotaxis response. Taken together, our results indicate that the behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as its mobility are impaired when exposed to microplastic leachates, potentially affecting the functioning of the ecosystem that the species supports.


Subject(s)
Brachyura , Mytilus edulis , Mytilus , Water Pollutants, Chemical , Animals , Ecosystem , Microplastics , Mytilus edulis/physiology , Plastics/chemistry , Polypropylenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Sci Total Environ ; 846: 157187, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868387

ABSTRACT

Plastic is one of the most ubiquitous sources of both contamination and pollution of the Anthropocene, and accumulates virtually everywhere on the planet. As such, plastic threatens the environment, the economy and human well-being globally. The related potential threats have been identified as a major global conservation issue and a key research priority. As a consequence, plastic pollution has become one of the most prolific fields of research in research areas including chemistry, physics, oceanography, biology, ecology, ecotoxicology, molecular biology, sociology, economy, conservation, management, and even politics. In this context, one may legitimately expect plastic pollution research to be highly interdisciplinary. However, using the emerging topic of microplastic and nanoplastic leachate (i.e., the desorption of molecules that are adsorbed onto the surface of a polymer and/or absorbed into the polymer matrix in the absence of plastic ingestion) in the ocean as a case study, we argue that this is still far from being the case. Instead, we highlight that plastic pollution research rather seems to remain structured in mostly isolated monodisciplinary studies. A plethora of analytical methods are now available to qualify and quantify plastic monomers, polymers and the related additives. We nevertheless show though a survey of the literature that most studies addressing the effects of leachates on marine organisms essentially still lack of a quantitative assessment of the chemical nature and content of both plastic items and their leachates. In the context of the ever-increasing research effort devoted to assess the biological and ecological effects of plastic waste, we subsequently argue that the lack of a true interdisciplinary approach is likely to hamper the development of this research field. We finally introduce a roadmap for future research which has to evolve through the development of a sound and systematic ability to chemically define what we biologically compare.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Humans , Interdisciplinary Studies , Microplastics , Plastics/chemistry , Polymers , Water Pollutants, Chemical/analysis , Whales
11.
Sci Total Environ ; 826: 153922, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35183637

ABSTRACT

Plastic contamination has major effects on biodiversity, enhancing the consequences of other forms of global anthropogenic disturbance such as climate change and habitat fragmentation. Despite this and the recognised importance of intraspecific diversity, we still know relatively little about how plastic pollution affects diversity below the species level. Here, we assessed the effects of intraspecific variation in a habitat forming species (the Mediterranean mussel Mytilus galloprovincialis) on the trapping and ingestion of microplastics. We focused on symbiont-induced phenotypic variation in mussel beds. Using fractal analysis, we measured an increase in the complexity of mussel bed surfaces by ca. 15% caused by phototropic shell-degrading endoliths. By simulating high tide flow conditions and incoming waves, we found that symbionts significantly increased microplastic accumulation in mussel beds. This likely reflects deceleration of near-bed flow velocities, creation of turbulence in the bottom boundary layer and consequently increased particle retention. This effect was not constant at high tide, with no effect of infestation on retention at the base of the mussel bed under mid and high flow conditions and reduced microplastic trapping on the surface of mussel shells. Nevertheless, under natural conditions, the ingestion and trapping of microplastic were higher by the mussels comprising beds with symbionts than those in beds without symbionts. Given the dependency of many species on mussel biogenic habitats, there is an increased risk of plastics moving up the food chain in mussel beds infested by symbiotic endoliths. Our results highlight how the effects of within-species phenotypic diversity may influence the consequences of rising levels of plastic pollution.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Biological Variation, Population , Eating , Ecosystem , Microplastics , Plastics , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 826: 154091, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35219681

ABSTRACT

With 4 to 12 million tons of plastic entering the marine environment each year, plastic pollution has become one of the most ubiquitous sources of pollution of the Anthropocene threatening the marine environment. Beyond the conspicuous physical damages, plastics may release a cocktail of harmful chemicals, i.e. monomers, additives and persistent organic pollutants. Although known to be highly toxic, plastic leachates seemingly appear, however, as the "somewhat sickly child" of the plastic pollution literature. We reviewed the only 26 studies investigating the impact of plastic leachates on marine microbes and invertebrates, and concluded that the observed effects essentially depend on the species, polymer type, plastic composition, accumulated contaminants and weathering processes. We identified several gaps that we believe may hamper progress in this emerging area of research and discussed how they could be bridged to further our understanding of the effects of the compounds released by plastic items on marine organisms. We first stress the lack of a consensus on the use of the term 'leachate', and subsequently introduce the concepts of primary and secondary leachates, based on the intrinisic or extrinsic origin of the products released in bulk seawater. We discuss how methodological inconsistencies and the discrepancy between the polymers used in experiments and their abundance in the environment respectively limit comparison between studies and a comprehensive assessment of the effects leachate may actually have in the ocean. We also discuss how the imbalanced in the variety of both organisms and polymers considered, the mostly unrealistic concentrations used in laboratory experiments, and the lack of investigation on key ecosystem engineers may considerably narrow the spectrum of our understanding of the plastic leachates' effects. We finally discuss how increasing multi-disciplinarity through collaborations between different research fields may benefit to an area of research which is still in its early infancy.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Humans , Plastics/toxicity , Polymers , Water Pollutants, Chemical/toxicity
13.
Ecol Evol ; 11(21): 15141-15152, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765166

ABSTRACT

We tested the response of algal epifauna to the direct effects of predation and the indirect consequences of habitat change due to grazing and nutrient supply through upwelling using an abundant intertidal rhodophyte, Gelidium pristoides. We ran a mid-shore field experiment at four sites (two upwelling sites interspersed with two non-upwelling sites) along 450 km of the south coast of South Africa. The experiment was started in June 2014 and ran until June 2015. Four treatments (predator exclusion, grazer exclusion, control, and procedural control) set out in a block design (n = 5) were monitored monthly for algal cover for the first 6 months and every 2 months for the last 6 months. Epifaunal abundance, species composition, algal cover, and algal architectural complexity (measured using fractal geometry) were assessed after 12 months. Predation had no significant effect on epifaunal abundances, while upwelling interacted with treatment. Grazing reduced the architectural complexity of algae, with increased fractal dimensions in the absence of grazers, and also reduced algal cover at all sites, though the latter effect was only significant for upwelling sites. Epifaunal community composition was not significantly affected by the presence of herbivores or predators but differed among sites independently of upwelling; sites were more similar to nearby sites than those farther away. In contrast, total epifaunal abundance was significantly affected by grazing, when normalized to algal cover. Grazing reduced the cover of algae; thus, epifaunal abundances were not affected by the direct top-down effects of predation but did respond to the indirect effects of grazing on habitat availability and quality. Our results indicate that epifaunal communities can be strongly influenced by the indirect consequences of biotic interactions.

14.
Ecol Evol ; 11(21): 15205-15211, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765171

ABSTRACT

The carbon footprint of flying overseas to conferences, meetings, and workshops to share and build knowledge has been increasingly questioned over the last two decades, especially in environmental and climate sciences, due to the related colossal carbon emissions. Here, we infer the value of scientific meetings through the number of publications produced either directly or indirectly after attending a scientific conference, symposium, or workshop (i.e., the conference-related production) and the number of publications produced per meeting (i.e., the conference-related productivity) as proxies for the academic value of these meetings, and relate them to both the number of meetings attended and the related carbon emissions. We show that conference-related production and productivity, respectively, increase and decay with the number of meetings attended, and noticeably that the less productive people exhibit the largest carbon footprint. Taken together, our results imply that a twofold decrease in the carbon footprint F CO 2 of a given scientist would result in a twofold increase in productivity through a fivefold decrease in the number of meeting attended. In light of these figures, we call for both the implementation of objective and quantitative criteria related to the optimum number of conferences to attend in an effort to maximize scientific productivity while minimizing the related carbon footprint, and the development of a rationale to minimize the carbon emission related to scientific activities.

15.
Ecol Evol ; 11(12): 7114-7124, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188798

ABSTRACT

Species that inhabit high-shore environments on rocky shores survive prolonged periods of emersion and thermal stress. Using two Hong Kong high-shore littorinids (Echinolittorina malaccana and E. radiata) as models, we examined their behavioral repertoire to survive these variable and extreme conditions. Environmental temperatures ranged from 4°C in the cool season to 55.5°C in the hot season, with strong seasonal and daily fluctuations. In the hot season, both species allocated >35% of their activity budgets to stress-mitigating thermoregulatory behaviors (e.g. standing, towering) and relatively small proportions to foraging (<20%) and reproduction (<10%). In the assumedly benign cool season, greater proportions (>70%) of activity budgets were allocated to stress mitigation behaviors (crevice occupation, aggregation formation). Both species exhibited multifunctional behaviors that optimized time use during their tidally-constrained activity window in the hot season. Females mated while foraging when awash by the rising tide, and some males crawled on top of females prior to ceasing movement to form 'towers', which have both thermoregulatory benefits and reduce searching time for mates during subsequent activity. The function of such behaviors varies in a state-dependent manner, for example, the function of trail following changes over an activity cycle from mate searching on rising tides, to stress mitigation on falling tides (aiding aggregation formation), and to both functions through tower formation just before movement stops. Many of these behavioral responses are, therefore, multifunctional and can vary according to local conditions, allowing snails in this family to successfully colonize the extreme high-shore environment.

16.
Am Nat ; 197(5): 615-623, 2021 05.
Article in English | MEDLINE | ID: mdl-33908830

ABSTRACT

AbstractSelf-organized, regular spatial patterns emerging from local interactions among individuals enhance the ability of ecosystems to respond to environmental disturbances. Mussels self-organize to form large, regularly patterned biogenic structures that modify the biotic and abiotic environment and provide numerous ecosystem functions and services. We used two mussel species that form monospecific and mixed beds to investigate how species-specific behavior affects self-organization and resistance to wave stress. Perna perna has strong attachment but low motility, while Mytilus galloprovincialis shows the reverse. At low density, the less motile P. perna has limited spatial self-organization compared with M. galloprovincialis, while when coexisting, the two species formed random spatial patterns. At high density, the two species self-organized in similar ways, while when coexisting, patterns were less strong. Spatial pattern formations significantly shaped resistance to hydrodynamic stress. At low density, P. perna beds with strong attachment and M. galloprovincialis beds with strong spatial organization showed higher retention rates than mixed beds. At high density, the presence of strongly attached P. perna significantly increased retention in mixed and P. perna beds compared with M. galloprovincialis beds. Our study emphasizes the importance of the interplay of species-specific behaviors to spatial self-organization and stress tolerance in natural communities.


Subject(s)
Ecosystem , Mytilus , Population Density , Stress, Physiological , Animals , Hydrodynamics , Mytilus/physiology , Species Specificity , Stress, Physiological/physiology
17.
Glob Chang Biol ; 27(11): 2549-2560, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33772983

ABSTRACT

Temperature extremes are predicted to intensify with climate change. These extremes are rapidly emerging as a powerful driver of species distributional changes with the capacity to disrupt the functioning and provision of services of entire ecosystems, particularly when they challenge ecosystem engineers. The subsequent search for a robust framework to forecast the consequences of these changes mostly ignores within-species variation in thermal sensitivity. Such variation can be intrinsic, but can also reflect species interactions. Intertidal mussels are important ecosystem engineers that host symbiotic endoliths in their shells. These endoliths unexpectedly act as conditionally beneficial parasites that enhance the host's resistance to intense heat stress. To understand how this relationship may be altered under environmental change, we examined the conditions under which it becomes advantageous by reducing body temperature. We deployed biomimetic sensors (robomussels), built using shells of mussels (Mytilus galloprovincialis) that were or were not infested by endoliths, at nine European locations spanning a temperature gradient across 22°of latitude (Orkney, Scotland to the Algarve, Portugal). Daily wind speed and solar radiation explained the maximum variation in the difference in temperature between infested and non-infested robomussels; the largest difference occurred under low wind speed and high solar radiation. From the robomussel data, we inferred body temperature differences between infested and non-infested mussels during known heatwaves that induced mass mortality of the mussel Mytilus edulis along the coast of the English Channel in summer 2018 to quantify the thermal advantage of endolith infestation during temperature extremes. Under these conditions, endoliths provided thermal buffering of between 1.7°C and 4.8°C. Our results strongly suggest that sustainability of intertidal mussel beds will increasingly depend on the thermal buffering provided by endoliths. More generally, this work shows that biomimetic models indicate that within-species thermal sensitivity to global warming can be modulated by species interactions, using an intertidal host-symbiont relationship as an example.


Subject(s)
Ecosystem , Mytilus , Animals , Friends , Humans , Portugal , Scotland
18.
Sci Rep ; 11(1): 4013, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597653

ABSTRACT

Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv-1 day-1 (usual temperature) to 0 mm3 indiv-1 day-1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.


Subject(s)
Foraminifera/metabolism , Foraminifera/physiology , Geologic Sediments/microbiology , Climate Change , Ecosystem , Marine Biology/methods , Temperature
19.
Ecol Appl ; 31(1): e02222, 2021 01.
Article in English | MEDLINE | ID: mdl-32867006

ABSTRACT

Plastic pollution is ubiquitous with increasing recognition of its direct effects on species' fitness. Little is known, however, about its more subtle effects, including the influence of plastic pollution on the morphological, functional and behavioral traits of organisms that are central to their ability to withstand disturbances. Among the least obvious but most pernicious forms of plastic-associated pollution are the chemicals that leach from microplastics. Here, we investigate how such leachates influence species' traits by assessing functional trait compensation across four species of intertidal mussels, through investigations of byssal thread production, movement and aggregation behavior for mussels held in natural seawater or seawater contaminated by microplastic leachates. We found no evidence for compensation of functional traits, but for each species, microplastic leachates reinforced one trait while others remained unaffected. Two species (Perna perna and Mytilus galloprovincialis), were characterized by a resistance strategy to disturbance; they produced more byssal threads in microplastic leachate seawater than in control seawater, while motility and aggregation remained essentially unaffected. In contrast, the other two species (M. edulis and Choromytilus meridionalis), showed a resilience strategy to disturbance through increased motility and aggregation in leachate seawater, while byssal thread production remained unaffected. These results suggest that the competitive abilities of intertidal mussels may be related to their sensitivity to microplastic leachates or other chemical disturbance. Importantly, the trait strengthening observed will affect the ability of these mussels to form spatially patterned beds, with implications for their quality as autogenic ecological engineers or foundation species. Thus, our findings have implications for the ability of mussel beds to tolerate disturbance, and hence for central ecosystem services, such as their ability to support biodiversity and enhance secondary and tertiary production. The results suggest that an inconspicuous aspect of plastic pollution has the potential to influence other communities and ecosystems in powerful ways.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Ecosystem , Microplastics , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
20.
J Therm Biol ; 94: 102785, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33292976

ABSTRACT

Understanding how behavioural adaptations can limit thermal stress for intertidal gastropods will be crucial for climate models. Some behavioural adaptations are already known to limit desiccation and thermal stresses as shell-lifting, shell-standing, towering, aggregation of conspecifics or habitat selection. Here we used the IRT (i.e. infrared thermography) to investigate the thermal heterogeneity of a rocky platform, with four different macrohabitats (i.e. bare rock, rock with barnacles, mussels and mussels incrusted by barnacles) over four thermally contrasted months. We investigated the body temperature of Littorina littorea and Patella vulgata found on this platform and the temperature of their microhabitat (i.e. the substratum within one body length around of each individual). We also considered the aggregation behaviour of each species and assessed the percentage of thermal microhabitat choice (i.e choice for a microhabitat with a temperature different than the surrounding substrate). We did not find any aggregation of L. littorea on the rocky platform during the four studied months. In contrast, P. vulgata were found in aggregates in all the studied periods and within each habitat, but there was no difference in body temperature between aggregated and solitary individuals. These two gastropods species were preferentially found on rock covered by barnacles in the four studied months. The presence of a thermal microhabitat choice in L. littorea and P. vulgata is habitat-dependent and also season-dependent. In June, July and November the choice was for a microhabitat with temperatures lower than the temperatures of the surrounding substrate whereas in December, individuals choose microhabitats with higher temperatures than the temperatures of their substratum. Taken together, these results suggest that gastropods species are able to explore their environment to find sustainable thermal macrohabitats and microhabitats and adapt this behaviour in function of the conditions of temperatures.


Subject(s)
Ecosystem , Gastropoda/physiology , Animals , Behavior, Animal , Body Temperature , Microclimate , Seasons , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...